The Effect of Macromolecular Crowding on the Electrostatic Component of Barnase–Barstar Binding: A Computational, Implicit Solvent-Based Study
نویسندگان
چکیده
Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder-protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein-protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase-barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders), this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered "effective" solvent dielectric to account for crowding, although the "best" effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the electrostatic component of protein binding, and it provides an initial framework for future analyses.
منابع مشابه
Effect of Macromolecular Crowding on the Electrostatic Interaction of Barnase-Barstar: Initial Steps Using an Explicit Solvent Model
Proteins that bind intracellularly are surrounded by other macromolecules. Macromolecular crowding has been shown to impact protein folding and binding, but its effects on the electrostatics of protein binding have not been thoroughly studied. Two ways crowding can affect binding are via loss of water mobility and water depletion. Crowding causes loss of water mobility because more water molecu...
متن کاملProtein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution.
We have solved, refined, and analyzed the 2.0-å resolution crystal structure of a 1:1 complex between the bacterial ribonuclease, barnase, and a Cys-->Ala(40,82) double mutant of its intracellular polypeptide inhibitor, barstar. Barstar inhibits barnase by sterically blocking the active site with a helix and adjacent loop segment. Almost half of the 14 hydrogen bonds between barnase and barstar...
متن کاملEffect of interprotein polarization on protein-protein binding energy
Molecular dynamics simulation in explicit water for the binding of the benchmark barnase-barstar complex was carried out to investigate the effect polarization of interprotein hydrogen bonds on its binding free energy. Our study is based on the AMBER force field but with polarized atomic charges derived from fragment quantum mechanical calculation for the protein complex. The quantum-derived at...
متن کاملA Continuum Electrostatic Analysis of Protein Binding: Barnase–Barstar Complex Formation
Understanding the nature of protein–protein recognition is fundamental to the study of biological processes. The complex between barnase, a bacterial RNase, with its intracellular inhibitor, barstar, is a suitable system for the general problem of molecular recognition since the structures of the proteins have been solved, both separately and in the protein complex. This interaction between bar...
متن کاملInteraction energy decomposition in protein-protein association: a quantum mechanical study of barnase-barstar complex.
Protein-protein interactions are very important in the function of a cell. Computational studies of these interactions have been of interest, but often they have utilized classical modelling techniques. In recent years, quantum mechanical (QM) treatment of entire proteins has emerged as a powerful approach to study biomolecular systems. Herein, we apply a semi-empirical divide and conquer (DC) ...
متن کامل